cup side by

ISSN: 1813-1638

The Medical Journal of Tikrit University

Available online at: <u>www.mjotu.com</u>

Academic Scientific Journals

Nada A. Mijthab ^{*(1)} Israa H. Saadoon ⁽²⁾ Ehsan M. A. Almola⁽³⁾ Duha A. Mijthab⁽⁴⁾

(1) Public Health Laboratory Ninevah Health Directorate Ninevah Iraq (2) Department of Microbiology College of Medicine Tikrit University Salahaldeen Irad (3) Department of Pathology College of Medicine Ninevah University Ninevah Irad (4) Department of obstetrics and gynecology Al-Batool Teaching Hospital Ninevah Iraq

Keywords:

Cervical cytology Human Leukocyte Antigens (HLA) Cervical cancer Pap smears Nineveh Governorate.

RTICLE INFO

Article history:

Received	05 Jan 2018
Accepted	02 July 2018
Available online	01 Dec 2018

Marriage variables relation to abnormal cervical Pap smears results in Nineveh governorate patient's

women

ABSTRACT:

The Medical journal of Tikrit University he Medical journal of Tikrit University

The Medical journal of Tikrit University The Medical journal of Tikrit University

Background The cervical Pap smear test is a standard screening procedure used for cervical cytology testing for the diagnosis of premalignant and malignant cervical lesions. The risk factors for cervical cancer are early age at first intercourse, multiple sexual partners, nutritional status, hormonal changes, parity, host immune status, smoking, viral oncogenic Human Leukocyte Antigens (HLA) types and coinfection with other viruses such as human immunedeficiency virus-1 and herpes simplex

virus. **Aim:** is to study the relation of some of the marriage variants as risk factors for cervical cancer with abnormal Pap smears results for women in Nineveh governorate.

Materials and Methods: A cross-sectional study was carried out on patients' women attended the Obstetric and Gynecological Mosul Hospitals for the period from June 2013 through June 2014, after the collection of data through direct meeting and a questionnaire comprising patients' characteristics and the results of Pap smear. Five hundred fifty one Pap smears were collected from women between the ages of 11 and 76 years. The personal characteristics of women included the mean age at 1st marriage which was 18.9 years; 18.8 years mean age of duration of marriage, and mean age at 1st delivery as 20.3 years. Other features included the sequences among wives or husbands which were found to be higher in 1st sequence (who had one husband or those who her husbands never had another wife): 464, 84.21% and 508, 92.20% respectively.

Results: abnormal Pap smears were 99/551(17.97%). A significant relation were observed between abnormal Pap smear in highest percentage at age (25-45) years 51.52% (P=0.032), and mean age at early forty 41.6 \pm 12.21(P=0.002). The highest rate of women with epithelial abnormal Pap smears results were 1st sequence among wives and husbands (79.80% and 91.92% respectively). The mean \pm SD of women with epithelial abnormal Pap smears of age at 1st marriage, and 19.7 \pm 4.90 years of age at 1st delivery. Non-significant relation was detected between abnormal Pap smears and each of (the sequence among wives or husbands, age at 1st marriage, and at 1st delivery). Mean \pm SD of women with epithelial abnormal Pap smears results were 21.1 \pm 12.41years of duration of marriage, and there was significant effect for duration of marriage by using the same test between the two mean ages (P=0.028).

Conclusion: the age, and duration of marriage were strongly related to abnormal cervical Pap smear results, while age at 1st marriage, 1st delivery, sequence among wives or husbands were not related with epithelial abnormal cervical Pap smear in Nineveh governorate women.

DOI: http://dx.doi.org/10.25130/mjotu.24.02.14

*Corresponding author E mail: haesmofak@gmail.com

4edical journal of Tikrit University

Introduction

Cancer of the cervix comprises the second most common cancer in women worldwide, with an annual world incidence of almost half a million ^[4], accounting for 529828 new cases each year. In Iraq there is 10.74 million women at ages 15 years and older who are at risk of progressing cervical cancer, while only 291 women are diagnosed with cervical cancer every year.

Cervical cancer rankings as the 12th most frequent cancer among women in Iraq, and the 10th most common cancer among women between 15 and 44 years of age ^[5].

The Pap smear is a test used to collect cells from the cervix for cytology. The system used for describing Pap test results is the Bethesda System (TBS) version 2001 [6, 7, 8, 9, 10, and 11]

- 1. Negative for Intraepithelial Lesion or Malignancy (NILM).
- 2. Epithelial Abnormalities of the cells (EA).

Most invasive cervical cancers occur in women who have not taken usual Pap smears. Half of women diagnosed with cervical cancer are between the ages of (35-55) ^[12]. It has been stated that between (20-60%) of all cervical cancer deaths could be avoided by improving screening programs^[13]. By this technique early detection of abnormal epithelial changes is done ^[14].

The is to study the relation of some of the marriage variants as risk factors for cervical cancer with abnormal Pap smears results for women in Nineveh governorate.

Materials and Methods

1. Patients selection

Over 12 months period from June 2013 through June 2014 a cross sectional study was performed with a total of 551 Pap smears were collected from women between the ages of 11 and 76 years, the mean of ages was 38.4 years. Epithelial abnormalities (EA) were detected in 99 cases of total Pap smears.

Samples were collected from women requesting gynecological guidance for different complaints from the major hospitals in Mosul at Al-Khanssaa Teaching Hospital, Al-Batool Teaching Hospital, and Al-Mosul General Hospital. Samples were taken in the Gynecology Clinical Units in the Hospitals with the aid of the Cytology and Pap Smear Units in these Hospitals.

2. Inclusion criteria:

The target population was every married woman with vaginal discharge, the vaginal bleeding (inter-menstrual, post-coital, and post-menopausal), and genital warts. A standard questionnaire was filling by every woman included in the study for the collection of the sample and cervical Pap smear reporting paper determined by the Iraqi Ministry of Health.

The data included women's personal history and related risk factors such as general characteristics of women, lifestyle, marital status, and sexual history of patient were contained in the questionnaire.

3. Exclusion criteria:

Pregnant women refused the test because of fear of possible abortion, therefore was excluded, also menstruating women at the time of attending because of the artifact and the confusion caused by the red blood cells in the Pap smear was excluded.

4. Cervicovaginal Cytology

Conventional Pap smear used for the diagnosis of malignancy and premalignant dysplastic changes for cytological assessment of the cervix ^[15]. the Pap test which is recommended worldwide for mass screening, because of the efficacy in the detection of premalignant lesions, and cost-effectiveness ^[15].

The Pap test was often done by a senior gynecologist, with the aid of the speculum and the use of a wooden Ayer's spatula by gentle scraping of the cervix for cells collection from the endocervix and the endo-ectocervical junction by rotating the end of the spatula at the junction of the cervix, at that time the sample was immediately spread onto a glass microscope slide, and while it is wet immediately immersed into a jar containing 95% ethyl alcohol for fixation (for 30 minutes)⁽¹⁾.

At the cytopathology department, the slides were stained by Pap stain for cytological diagnosis and all cases were categorized according to the Bethesda system and the report was designed and the results were groups according to Bethesda system (2001)^{[11].}

5. Data and statistical analysis.

Data categorization and coding performed via Microsoft Excel-2007. The descriptive and analytic statistics was carried out by using Minitab version 16.2 software statistical program. Mean ± Standard Deviation (SD) done for measurable variables. Chi-square test of independence; were used for two catigoral variables. Independent t-test for two means. Pvalues < 0.05 were considered statistically significant throughout data analysis.

Results

1. Personal Characteristics of the Sampled Women

The personal characteristics of 551 women included the mean age at 1st marriage which was 18.9 years; 18.8 years mean age of duration of marriage, and mean age at 1st delivery as 20.3 years...Table I.

The Medical Journal Of Tikrit University (2018) 24 (2): 148-158

Characteristics	No.	Mean	SD	Minimum	Maximum
Age (years)	551	38.4	11.20	11.0	76.0
Age at 1 st marriage(years)	551	18.9	4.76	11.0	40.0
Duration of marriage (years)	551	18.8	11.33	0.1	61.0
Age at 1 st delivery (years)	512	20.3	4.90	12.0	41.0

Table I: Personal characteristics of the study sample (n = 551).

2. Age Groups Distribution According to the Results of Pap Smears

Table II displays the comparison between the age groups and the result of the Pap smear and the statistical analysis was performed on the data presented in it by using Chi-square test. There were significant differences in P- value 0.032* among four categories of age groups with Pap smear results, also independent ttest of two means was used between results of Pap smear and was significant result with a P- value 0.002. The highest rate of all women was within the age group 25 - 45year. The highest rate of women with Cervical EA group was within the age group 25 - 45 year (51.52%), followed by those within the age group 46 - 64 year (35.35%).

Age groups	NI	LM	Cervical EA		То	P-value	
(years)	No.	%	No.	%	No.	%	
≤24	54	11.95	10	10.10	64	11.62	0.032*
25 – 45	289	63.94	51	51.52	340	61.71	
46 – 64	103	22.79	35	35.35	138	25.05	
≥65	6	1.33	3	3.03	9	1.63	
Total	452	100.00	99	100.00	551	100.00	
Mean age	37.7 ± 10.80		41.6 ± 12.21		38.4 ± 11.20		0.002**

Table II: Comparison between the age groups and the result of Pap smears.

* Chi-square test was used, d.f = 3.

** Independent t-test of two means was used.

3. The Effect of Early Marriage, Early Delivery, and Duration of Marriage on Pap Smears Results The effect of age of 1st marriage is also studied and no significant effect of age at 1st

marriage or at 1st delivery on Pap smear results, while there was significant effect for duration of marriage by using the same test between the two mean ages on Pap smear results as shown in Table III.

 Table III: The effect of age at 1st marriage, duration of marriage and age at 1st delivery on Pap smear result.

	NILM	Cervical EA	
Parameters	[n = 452]	[n = 99]	P-value*
	mean ± SD	mean ± SD	
Age at 1 st marriage(years)	19.0 ± 4.77	18.3 ± 4.66	0.157
Duration of marriage (years)	18.3 ± 11.00	21.1 ± 12.41	0.028
Aga at 1 st delivery (years)	[n = 418]	[n = 94]	0.150
Age at 1 uchvery (years)	20.5 ± 4.89	19.7 ± 4.90	

* Independent t-test of two means was used.

4. Sequences of the Study Women

Other features included the sequences of remaining multiple sequences 2^{nd} or 3^{rd} wives or women which were found to be higher in 1^{st} husbands in smaller percentages were 15.78% among wives and husbands: 464, 84.21% and and 7.80% respectively as shown in Figure I. 508, 92.20% respectively. Compared with the

5. Sequences of Wives and Husbands and Pap Smears Results.

The highest rate of women with cervical EA cytological results were women who had one husband or those who her husbands never had another wife (79.80% results was statistically non-significant Table IV.. and91.92%respectively).Therelationbetween number of wives or husbands withPapsmears

Table IV: The relationship between the sequences of wives and husbands and Pap
smears results.

Parameters	NILM		EA cervical		Total		P-value*
i ur uniceer 5	No.	%	No.	%	No.	%	
Sequences among wives							
1^{st}	385	85.18	79	79.80	464	84.21	0 184
$\geq 2^{nd}$	67	14.82	20	20.20	87	15.79	01101
Sequences among husbands							
1^{st}	417	92.26	91	91.92	508	92.20	0.910
$\geq 2^{nd}$	35	7.74	8	8.08	43	7.80	0.710
Total	452	100.00	99	100.00	551	100.00	

* Chi-square test was used, d.f = 1.

Discussion

Whereas about 90% of women undergo a screening test in some developed countries. this rates decreases to in only 5% in developing countries, this is because of the relative low cervical carcinoma in Islamic countries in relation to the western countries because of the high and early cervical carcinoma due to HPV infection by the multiple sexual partners in western countries ^[16].

1. Age Groups Distribution According to The Results of Pap Smears

All sampled women mean age were 38.4 ± 11.4 in patients women with cervical lesion, while early forty the mean age of women with cervical EA 41 \pm 12.12 with significant P= 0.002 between two mean ages of normal and cervical EA in the present study , in agreement with study from Baghdad by Al-Alwan ^[17], and accordance with result of study from Turkey^[18], in significant results p<0.01 mean age 41.15 \pm 11.44 in patients women with cervical lesion, but disagreement with result of study, which was higher mean age 52.1 years ^[19]. Age factor was considered a prognostic factor in which survival will be better if early diagnosis and progress in therapy are carried on ^[20].

The highest rate of women with Cervical EA group was within the age group 25 - 45 year (51.52%), followed by those within the age group 46 - 64 year (35.35%), and 13.13% in women with age less than 24 and more than 65. There were significant differences in p=0.032 among four categories of age groups with Pap smear results. In other study from Baghdad, epithelial abnormal changes of Pap smear results were significantly associated with age group (41-50) years ^[21]. More studies published between 2010 and 2011 in specific countries included study of 3011 Kuwaiti's, showed that 40.8% of epithelial abnormal Pap smear results were found in women who were (30-39) years of age, 29.6% in women (40-49) years of age, 19.7% in women above 50 years, and 9.9% in women less than 34 years old, and other study records in Thailand where 60% of women with epithelial abnormal changes of Pap results were with age less than 50 years ^[22]. Use

of Pap test with linked diagnostic procedures and treatment decreases the incidence of invasive cervical cancer, and the advantage increases with age ^[23]. Nearly all the papers in agree with the present study results about the common age of presentation of patients with EA Pap smear results. This is because that this age is the age of sexual activity, which is regarded as the most important route for transmitting the causative HPV, which by itself is regarded as the most significant risk factor of premalignant or malignant squamous cell changes in all of the genital tract.

2. The Effect of Early Marriage, Early Delivery, and Duration of Marriage on Pap Smears Results

Appearing in the present study early marriage (at early sexual relations) is not significantly related with HPV as Iraqi /Mosul women start sexual intercourse with marriage and with one partner, other works established that women who have their first intercourse at an early age are at high risk for HPV infection and cervical cancer ^[24, 25, 26, 27, 28].

Other study from Colombia revealed that cervical EA Pap smears results were significantly linked with women married with age <18 years, indicated that women with premalignant changes or malignant cervical lesions were younger, and started their sexual practice earlier with more sexual partners than healthy women ^[29]. Furthermore, other study reported increased cervical EA Pap results with early sexual behaviors in USA ^[30, 31].

In 2013, a study registered significant relationship between marriage duration and the incidence of cervical cancer in Iraqi women, consistent with present study ^[32].

3. The Relationship Between The Sequences of Wives and Husbands and Pap Smears Results

The highest rate of women with cervical EA cytological results were women who had one husband or those who her husbands never had another wife (79.80% and 91.92% respectively). The relation between number of wives or husbands with cervical Pap smears results was statistically not significant. This result may be attributable to the strict social and religious sexual habits that prevent non marriage sexual activity even with married persons and this result in restriction of HPV transmission between married men from non-marriage and women sexual activity. Even with those with marriage with more than one woman is also considering the religious precautions and this prevent viral transmission.

Conclusion

- 1. Early forty the mean age of women with cervical EA 41 \pm 12.12 at significant P= 0.002. In present study 51.52% of cervical EA were seen in women at child-bearing age (25-45), There were significant differences in p=0.032 among four categories of age groups with Pap smear results.
- 2. There was significant effect for duration of marriage on Pap smear results at mean ages $21.1 \pm$ 12.41. It is clear that the marital status and marriage duration were the determinants of their higher persistent exposure to HPV.
- No significant relation of age at 1st marriage, age at 1st delivery, and sequences among wives or husbands with Pap smear results.

References

- Bibbo M, Wilbur DC. Comprehensive Cytopathology.
 3rd Ed: China. Saunders an imprint of Elsevier Inc. 2008: 17-22, 80-90.
- Robbins and Cotran. Pathologic basis of disease. 8th ed. Philadelphia: Saunders Elsevier 2010.
- Chhieng D, Hui P. Cytology and Surgical Pathology of Gynecologic Neoplasms. USA: Springer Science+Business Media: http://www.springer.com 2011.

- 4. Ferlay J, Soerjomataram I, Ervik M, et al GLOBOCAN 2012 v1.0. Cancer Incidence and Mortality Worldwide: IARC 2013; Cancer Base 11: Lyon, France: [Internet]. International Agencv for Research on Cancer. Available from http://globocan.iarc.fr.
- 5. WHO/ICO Information Centre on HPV and Cervical Cancer (HPV Information Centre). Human Papilloma virus and Cancers Related in Iraq. Summary Report 2017. Available at www. Who. int/ hpvcentre
- Cibas ES. Cytology: diagnostic principles and clinical correlates. 3rd Ed: China. Saunders an imprint of Elsevier Inc. 2009: 1-43.
- 7. Hart KW, Williams OM, Thelwell N, et al. Novel method for detection, typing, and quantification of human papillomavirus in clinical samples. J Clin Microbiol 2001; 39:3204-12.
- 8. American Cancer Society. Treating Cervical Cancer. Copyright 2016.
- 9. Ronco G, Cuzick J, Pierotti P, et al. Accuracy of liquid based versus conventional cytology: overall results of new technologies for cervical cancer

screening: randomised controlled trial. BMJ 2007; 335(7609):28.

- Duraisamy K, Jaganathan KS, Bose JC. Methods of Detecting Cervical Cancer. Advan Biol Res 2011; 5 (4): 226-232.
- 11. Saslow D, Solomon D, Lawson H, et al. American Cancer Society, American Society for colposcopy and Cervical Pathology, and American Society for Clinical Pathology Screening Guidelines for the Prevention and Early Detection of Cervical Cancer. CA Cancer J Clin. 2012; 62(3):147-172.
- 12. American Cancer Society, 2012. Cancer reference information. Retrieved 25 November 2012,from http:// www.cancer.org/ cancer/ cervical cancer/ overview guide/ index
- Leyva M, Byrd T, Tarwater P. Attitudes towards Cervical Cancer Screening: A Study of Beliefs among Women in Mexico. Californian J. of Health Promotion 2006; 4(2): 13-24.
- Melón S, Alvarez-Argüelles M, de Oña M. Molecular Diagnosis of Human Papillomavirus Infections. licensee In Tech. http://dx.doi.org/10.5772/55706
- 15. Babes A. Diagnostic du cancer du colutérin par les frottis.

Presse Medical 1928; 36:451-454. (Cited by Bibbo)

- 16. Kuo DY, Goldberg GL.Screening of cervical cancer: where do we go from here? Cancer Invest. 2003; 21: 157-61.
- 17. Al-alwan NA, Al-Khurri L, Al-Rawi K. Cytology histopathology corre-lation as a quality control procedure in gynecologic diagnosis. J. of the Faculty of Medicine. University of Baghdad. 1994; 36: 195-9.
- SİmavlI S, Kaygusuz3 I, Çukur S, Aksel F. Abnormal Cervical Cytology Risk Factors in the Western Black Sea Region and the Importance of Health Insurance. Turkish Journal of Pathology. 2014; 30: 11-17.
- Missaoui N, Hmissa S, Trabelsi A, *et al.* Cervix cancer in Tunisia: Clinicervical cancer. Lancet. 2010; 361: 2217-25.
- 20. Meftah el khair M, Ait Mhand R, Mzibri ME, Ennaji MM. Risk factors of invasive cervical cancer in Morocco. Cell Mol Biol (Noisy-le-grand). 2009; 1: 175-85.
- 21. Khalaf MK, Rasheed FA, Hussain SA. Association between Early Marriage and Other Sociomedical Characteristics with the Cervical Pap smear Results in Iraqi

Women. Advances in Sexual Medicine. 2015; 5: 73-82.

22. Kritpetcharat O, Wutichouy W, Sirijaichingkul S, Kritpetcharat P. Comparison of Pap Smear Screening Results between Akha Hill Tribe and Urban Women in Chiang Rai Province, Thailand. Asian Pacific Journal of Cancer Prevention. 2012; 13: 5501-5504. http://dx.doi.org/10.7314/APJC

P.2012.13.11.5501

- 23. Sasieni P, Castanon A, Cuzick J. Effectiveness of Cervical Screening with Age: Population Based Case-Control Study of Prospectively Recorded Data. British Medical Journal. 2009; 339: b2968. http://dx.doi.org/10.1136/bmj.b2 968
- 24. Abd El All HS, Refaat A. K. Dandash Prevalence of cervical neoplastic lesions and Papilloma Human Virus infection in Egypt: National Cervical Cancer Screening Project. Infectious Agents and Cancer 2007; 2: 12.
- 25. Williams MA, Kenya PR, Mati JK, Thomas DB: Risk factors for invasive cervical cancer in Kenyan women. Int J Epidemiology 1994; 23: 906-912.

- 26. Biswas LN, Manna B, Maiti PK, Sengupta S. Sexual risk factors for cervical cancer among rural Indian women: a case-control study. Int J Epidemiology 1997; 26: 491-495.
- 27. Kahn JA, Rosenthal SL, Succop PA, Ho GY, Burk RD. The interval between menarche and age of first sexual intercourse as a risk factor for subsequent HPV infection in adolescent and young adult women. J Pediatric 2002; 141: 718-723.
- 28. Nour NM. Health Consequences of Child Marriage in Africa. Emergency Infectious Diseases. 2006; 12: 1644-1649. http:// dx. doi. Org/ 10. 3201/eid1211.060510
- 29. Uribe-Perez CJ, Diaz-Martinez LA, Ortiz-Serrano R, Meza-Duran EE. Pap smears Prevalence and That of Pre-Malignant and Malignant Cervical Lesions amongst Women Living in the Carmen

Initiative Demonstration Area, Bucarmanga, Colombia. Revista Colombiana de Obstetrician y Gynecologic 2006; 57: 10-18.

- DA. 30. Baram Basson R. Sexuality, Sexual Dysfunction, and Sexual Assault. In: Berek Novak's JS, Ed. Berek Gynecology, 14th ed. Philadelphia: Lippincott Williams & Wilkins 2007: 313-349.
- Sultana R, Sultana N. Clinical Profile and Treatment Protocol of Invasive Carcinoma of Cervix. Bangladesh Medical J. (Khulna) 2012; 45:11-14.
- 32. Barzanjy BK, Talat LM, Ismail SA. Cervical Dysplasia: Assessment and Risk Factors among Women Attending the Maternity Teaching Hospital in Erbil, Kurdistan-Iraq. Zanco J. of Medical Sciences. 2013; 17: 286-293. http://dx.doi.org/ 10.15218/ zjms 2013.0004